Special biserial algebras with no outer derivations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special biserial algebras with no outer derivations

Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non uniserial projective injective A-mod...

متن کامل

The strong no loop conjecture for special biserial algebras

Let A be a finite dimensional algebra over a field given by a quiver with relations. Let S be a simple A-module with a non-split self-extension, that is, the quiver has a loop at the corresponding vertex. The strong no loop conjecture claims that S is of infinite projective dimension; see [1, 6]. This conjecture remains open except for monomial algebras; see, for example, [2, 6, 8, 11]. Under c...

متن کامل

Derived equivalence of symmetric special biserial algebras

We introduce Brauer complex of symmetric SB-algebra, and reformulate in terms of Brauer complex the so far known invariants of stable and derived equivalence of symmetric SB-algebras. In particular, the genus of Brauer complex turns out to be invariant under derived equivalence. We study transformations of Brauer complexes which preserve class of derived equivalence. Additionally, we establish ...

متن کامل

Special bases for derivations of tensor algebras

The existence of local bases in which the components of derivations of tensor algebras over a differentiable manifold vanish along paths is proved. The holonomicity of these bases is investigated. The obtained results are applied to the case of linear connections. Some relations with the equivalence principle are shown.

متن کامل

Tilted Special Biserial Algberas

Tilted algebras, that is endomorphism algebras of tilting modules over a hereditary algebra, have been one of the main objects of study in representation theory of algebras since their introduction by Happel and Ringel [9]. As a generalization, Happel, Reiten and Smalø studied endomorphism algebras of tilting objects of a hereditary abelian category which they call quasi-tilted algebras [8]. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2011

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm125-1-6